Low-rank Similarity Measure for Role Model Extraction
نویسندگان
چکیده
Computing meaningful clusters of nodes is crucial to analyze large networks. In this paper, we present a pairwise node similarity measure that allows to extract roles, i.e. group of nodes sharing similar flow patterns within a network. We propose a low rank iterative scheme to approximate the similarity measure for very large networks. Finally, we show that our low rank similarity score successfully extracts the different roles in random graphs and that its performances are similar to the full rank pairwise similarity measure.
منابع مشابه
Role model detection using low rank similarity matrix
Computing meaningful clusters of nodes is crucial to analyse large networks. In this paper, we apply new clustering methods to improve the computational time. We use the properties of the adjacency matrix to obtain better role extraction. We also define a new non-recursive similarity measure and compare its results with the ones obtained with Browet’s similarity measure. We will show the extrac...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملVisual Interest point detection based Rank Order Log filter for Content Based Image Retrieval
With increased digital images in image repositories efficient indexing and searching becomes essential for large image archives. Content based image retrieval system (CBIR) retrieve relevant images using low-level features like color, texture and shape for image representation. In this approach, a scheme of novel color image retrieval based on visual interest point is presented. The existing sy...
متن کاملRandom Walk on WordNet to Measure Lexical Semantic Relatedness
The need to determine semantic relatedness or its inverse, semantic distance, between two lexically expressed concepts is a problem that pervades much of natural language processing such as document summarization, information extraction and retrieval, word sense disambiguation and the automatic correction of word errors in text. Standard ways of measuring similarity between two words on a thesa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.4860 شماره
صفحات -
تاریخ انتشار 2013